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An algorithm is proposed to reduce by elementary similarity transformations a general 
complex matrix to the most condensed form obtainable. As many off-diagonal elements 
of the transformed matrix are made to vanish as is possible, subject to the requirement 
that numerical stability be maintained. For any input matrix, all elements below the diagonal 
are transformed to zero. Using a two-part algorithm, elements above the diagonal are also 
eliminated when this can be done with numerical stability. The first part attempts to elimin- 
ate all elements above the diagonal; if this is possible, a diagonal transformed matrix is 
obtained. When this first step fails to zero all elements above the diagonal, the second part 
of the algorithm attempts to eliminate all elements which remain above the first super- 
diagonal elements; if this is possible, a matrix in Jordan canonical form is obtained. In 
more difficult cases some non-zero matrix elements above the superdiagonal remain 
because their elimination would have destroyed the numerical stability of the results. 
These condensed matrices are useful in simplifying the formation of various matrix func- 
tions. Because of the numerical stability of the algorithm one can be confident of the 
accuracy of these matrix functions. 

I. INTRODUCTION 

Computations in physics and chemistry often require the calculation of quantities 
which are most concisely expressed as functions of matrices. In many cases, these 
matrices depend on a scalar parameter, and the appropriate matrix function must be 
evaluated for a large number of values of the scalar parameter. The two examples of 
such calculations with which we have been concerned are 

(a) computations of functions 9(w) of the form 9(w) = dlT(A + LO)-l d, 
(or, equivalently, the solution of the set of linear equations (A + 1w)x = d,) for 
several values of the parameter w (A is a general complex matrix; d,’ and d, are row 
and column vectors, respectively; x is a column vector; I is the unit matrix; and w is 
a scalar) [7-13, 171; and 

(b) functions G(t) of the form dlT exp(At) d, [l, 7, 121 for many values of the 
scalar parameter t. 

Direct computation of these functions for large matrices and for many different 
parameter values can be prohibitively costly of computer time. Whenever a complete 
eigenanalysis of A is possible (a suficient but not necessary condition for this is that 
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the eigenvalues be distinct), A may be transformed to diagonal form, D = U-lAU, 
where U is a matrix consisting of the eigenvectors of A and U-l is its inverse. In such 
a case, 

and 
X(w) = d,r[U(D + Iw) U--l]--l d, (I-1) 

G(t) = dlT exp{UDU-lt} d, . 

These relations may be rewritten as 

U-2) 

and 
3(w) = (dlTU)[D + Iw]-l(U-ld,) (l-3) 

G(t) = (dlTU) exp{Dt}(U-ld,). (I-4) 

In these forms, 9(w) and G(t) may be trivially evaluated, with little cost of computer 
time, for a great many values of the scalar parameters w or t. Several methods [13] 
have been proposed for the evaluation of the eigenvalues and eigenvectors of diagonal- 
izable complex matrices. The most popular method involves the use of the QR 
algorithm [2,3] to find the eigenvalues and the use of inverse iteration [19] to calculate 
the corresponding matrix of eigenvectors. This scheme has been adapted by Gordon 
and co-workers [7-131 to simplify the calculation of functions of the form of $(w) 
and G(t). 

Occasionally, however, physical problems arise in which the eigenvalues of the 
matrix A become degenerate or nearly degenerate. In such cases, the matrix A may 
still be similar to a diagonal matrix. Unfortunately, inverse iteration may be unable 
to calculate the complete set of eigenvectors needed to evaluate the functions 9(w) or 
G(t) [13]. Because of the relative effortlessness of the calculation of these functions 
when A has been diagonalized, it is beneficial computationally to develop an algorithm 
which can, in these cases, insure the determination of a complete set of eigenvectors. 

The degeneracy or near degeneracy of sets of eigenvalues may also, in many cases, 
mean that the matrix A cannot be numerically diagonalized at all; the simplest form 
to which A may be transformed is then Jordan canonical form [15]. At least two 
algorithms [6, 161 have been developed to attack the problem of obtaining the Jordan 
canonical form (J) similar to a general complex matrix and of obtaining the corre- 
sponding complete set of eigenvectors and generalized eigenvectors which make up U 
in the similarity relation J = U-iAU. The problem of finding the unique Jordan 
canonical form similar to a given complex matrix is a difficult one [6]. The similarity 
transformation matrices U and U-l, not being unitary matrices, have no a priori 
bounds on their norms; the calculation of the Jordan canonical form may then, in 
some cases, be numerically unstable. (We will discuss the concept of “stability” 
in the context of our problem in the next section.) The attainment of the Jordan 
canonical form similar to the matrix A is, nonetheless, most desirable whenever 
numerical stability can be maintained because the calculation of (J + &o-l or exp(Jt} 
is nearly as effortless as the corresponding cakulation for diagonal forms. Unfor- 
tunately, serious doubt has been cast on the advisability of trying to determine the 
Jordan canonical form of a matrix for a general complex matrix 161. 
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Finally, in cases where Jordan canonical form cannot be obtained while maintaining 
numerical stability, it is still useful to transform the matrix to block upper triangular 
form B, where the blocks may be diagonal, be of Jordan form, or contain non-zero 
elements everywhere in the upper triangle of the blocks. Formation of (B + IUJ-l or 
exp{Bt] then reduces to the problem of finding the inverse or the exponential of the 
individual upper triangular blocks. Those blocks which are diagonal or of Jordan 
form may still be trivially inverted or exponentiated for the several values of the scalar 
parameters w and t. The general upper triangular blocks must still be inverted or 
exponentiated by classical methods [15] for each value of the scalar parameters. 
But in most cases of physical interest these blocks are few in number and always of 
considerably smaller order than the original matrix. Thus, reaching a condensed 
block upper triangular form will still cause a considerable saving in the computation 
time for matrix functions of the type we have discussed; for example, performing an 
order (N3) process for five 10 x 10 blocks is 25 times faster than performing the 
process for the entire 50 x 50 matrix. 

In the present paper, we propose an algorithm which reduces an arbitrary complex 
matrix to a “condensed” form, while insuring “numerical stability.” The method aims, 
by unitary and elementary similarity transformations [19], to transform the matrix 
so as to eliminate as many off-diagonal elements as possible, subject to the restriction 
that the transformed matrix be similar to a matrix very nearly the same as the original 
matrix (this notion will be made precise in the next section). 

The production of our condensed form is favorable not only because of the compu- 
tational time saved, but also because we can bound the accumulation of errors intro- 
duced by the successive application of our elementary similarity transformations. 
In contrast, algorithms for reducing a general matrix to Jordan form do not, to our 
knowledge, give a precise bound on the errors introduced in the calculation of the 
Jordan canonical form and the corresponding set of eigenvectors and generalized 
eigenvectors. 

Section 11 discusses the concept of numerical stability as applied to the algorithm 
we present here. Section III describes our algorithm for obtaining block upper 
triangular form. Section IV discusses the general problem of reducing the matrix 
to a more condensed form. Sections V and VI describe the algorithm we present for 
obtaining the more condensed form. Some numerical examples of the use of our 
algorithm are given in Section VII. Finally, the algorithm and its advantages are 
summarized in Section VIII. 

II. THE CONCEPT OF STABILITY IN THIS REDUCTION SCHEMES 

As will be explained in Section III, we first perform Householder transformations 
to obtain a matrix in upper Hessenberg form and then use the QR algorithm to 
transform the matrix to upper triangular form. The bounding of errors for these two 

1 In this discussion, bold face capital letters will denote matrices and bold face lower case letters 
will denote vectors. 
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methods (based on unitary transformations) has been studied in detail [19], and the 
methods are known to be quite stable. Our analysis will begin with the propagation 
of errors due to the non-unitary similarity transformations which we describe in 
Sections III, VI and VII. 

The general matrices A which enter the problems referenced in Section I will have 
elements which have been experimentally determined or theoretically calculated and 
will contain some sampling or measurement uncertainties. This suggests that our 
interest should not lie in obtaining a diagonal or Jordan canonical or block upper 
triangular form exactly similar to the matrix A. Rather, we desire a condensed form 
which is similar to a matrix very nearly the same as A, where very nearly means that 
the differences between A and the matrix similar to the condensed form are either less 
than or of the order of the uncertainties in the matrix A itself (or alternatively, for 
matrices not arising from such physical problems and whose elements are known 
exactly, of the magnitude of round-off error in whatever precision of arithmetic is 
desired for the calculation). Precisely, if the condensed form is denoted by T, we desire 
the error matrix K, defined by A - UTU-l = K, to be smaller than the errors implicit 
in the matrix A itself. We define a small error matrix by the requirement that 11 K II/II A /I 
is smaller than some desired value. (11 . 11 denotes a matrix norm; in our calculation 
we use the norm /I C llm = maxi Cy=, I Cii I.) With such limitations the calculated 
function 

S(w) = (dl=U)[T + Iw]-l(U-ld,) 

= d,=[A’ + Iw]-~ d, 

will differ from the desired function 4(w) = dlTIA + Iw]--~ d, only because of 
inherent uncertainties in our knowledge of the matrix A or because of round-off error 
of the magnitude found in the precision of arithmetic we use for the calculation. 
This property is what we will refer to as the numerical stability of our algorithm. 

The individual transformations described in Sections IV, VI, and VII are elementary 
similarity transformations of the type (vii) described by Wilkinson [19] on page 45. 
We will follow his error analysis as presented on pages 124-126. Denoting the ith 
similarity matrix as i-ii , the transformations will be described by 

where Fi is the roundoff error introduced by performing the similarity transformation. 
After s such transformations, 

A, = F + G;lAoGl , where 

Gj c Rj **a R, and 

F = F, + G,lF,-,G, + ... + G,*F,G, . 

Defining K by 
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we may rewrite this as 

-k = G;‘(K + A,) G, , where 

K = Lp,L,l + Ls--lFs--lL;!l + -.- L,F,L;l 

and 

We may calculate and bound the norm of K as 

< i jl L,FiLyl II. 
i=l 

< i /I Li II II L? II II Fi Il. 
i=l 

We require that at each step of our calculations 

II Li II II Lil II < N2. 

Then 

II K II < ~~~ i II Fi II. 
i=l 

Fi is merely the matrix of round-off errors produced at step i. We assume that for 
computations on a machine with t binary bits for each number, 

II Fi II < f(C 4 z-t II &-, II 

[19, p. 120 ff.], wheref(i, n) is related to the number of operations required at the ith 
step for an n x n matrix. f(i, n) is some smooth function of the parameters i and n. 
If we require at each step of our calculation that 

II & II < J~A II A, II, 

we find 

& f(j, n) will be related to the number of arithmetic operations required to obtain 
A, . Each operation described in the following sections will require a maximum of 
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O(n2) elementary similarity transformations. Each transformation requires O(n) 
multiplications, leading to the observation of Section VII that each operation requires 
a maximum of O($) multiplications. Wilkinson [19, p. 148 ff.] shows that for a 
sequence of 0(n2) such similarity transformations, Ciz,j(j, n) grows for large n as 
x.j”=lf(j, n) g Kn3/2, where K is a numerical constant of order unity or slightly 
greater. For truly random errors a factor of n3i4 might well be more realistic than n3i2 
for large it [19, p. 1381. At any rate, 

If our transformations were, instead of elementary similarities, exactly2 unitary 
transformations 

We will in the following examples use the rule that NL and NA should be chosen so 
that with double precision arithmetic (16 digits on the IBM 360/91) the bound on 
I] K II is no worse than we would expect for exactly unitary transformations in single 
precision (6-7 digits). If our knowledge of the physical process described by A, 
implies that the individual elements themselves or some conservation rule among 
elements of a given row or column are known to some different precision, the bounds 
would be tightened or loosened to give the proper level of precision. Tn choosing the 
bounds NL and NA we will be guided by our knowledge of the appropriate physical 
problem; they are not arbitrary, but must be determined for each new problem. Tn 
our test results and subsequent work, we require that at each step 11 L, II jl L;r 11 < IO6 
and I/ Ai I/ < lo3 Ij A,, /I; any transformations which would violate these restrictions 
will not be performed. Thus, in double precision, 

JlS!! < IO-7 If: ,f'(j, n); 
II A, II j-1 

the calculation will be at least as good as one with that precision expected for a 
computation employing exactly unitary transformations in single precision arithmetic. 

Because the bounds on the norms of the transformation matrices or the transformed 
matrix itself may be approached by the acceptance of a single large elementary 
similarity transformation, an additional test may be applied to each transformation, 
limiting the norm of the transformation to a value less than that necessary to obey 
the bound applied to the accumulated trasnformation matrices. This test is not 
necessary to the stability of the algorithm we apply. But it is meant to prevent 
a single pathological transformation from increasing the bounds to a level such that 
transformations characterized by a smaller norm cannot be performed consistent 

a An exacdy unitary matrix U is one which satisfies the relation UUH = I exactly. (UH denotes 
the Hermitian conjugate of U; I is the unit matrix.) 
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with maintaining numerical stability. In the test calculations we describe later 
we require both that each transformation have a norm less than NT = (N,J1/2 + 1, 
and that the norms of the accumulated transformations and of the transformed matrix 
satisfy the inequalities previously proposed. This will insure the preservation of 
numerical stability while allowing no one pathological transformation to be accepted 
which technically preserves numerical stability but prevents further (and smaller) 
transformations which would lead to a more condensed final form of the matrix. 

III. PRELIMINARY STEPS IN THE REDUCTION SCHEME 

The first three steps in our scheme to transform a general y1 x ” complex matrix A 
to condensed form are identical to those used in well-known methods if diagonalizing 
a general complex matrix: 

(i) Equilibration of the matrix using diagonal similarity transformations to 
reduce the norm of the matrix. The algorithm is due to Osborne [18]. 

(ii) Householder unitary similarity transformations [19, pp. 347-3511 are used 
to eliminate the lowest n - (C + 1) elements of column e for 1 < 8 < n - 2. The 
transformed matrix has only zero elements below the first subdiagonal (this is known 
as upper Hessenberg form) when this process terminates. 

(iii) The matrix in upper Hessenberg form is brought into upper triangular form 
by QR transformations [19], which are also of the unitary similarity form. 

The result of these calculations is an upper triangular matrix T and the transfor- 
mation matrix U(T = U-‘AU). The inverse of U is immediately available because it is 
a product of the transposes of the unitary transformations in stages (ii) and (iii), and 
the diagonal similarity transformation of stage (i). This inverse is required both for 
transforming the vectors discussed in Section I, and for calculating the error bounds 
of Section II. The eigenvalues of A are now known, but further transformations must 
in general be performed to find the left and right eigenvectors. 

Beginning at the (n - 1, n) element, one forms3 Pnel,, = I + ken-lenT. One obtains 
trivially the relation cAl,n = I - kenelenT. If the product P&,TPnel,, = T1 is 
formed, one finds that T1 differs from T only by elements in the nth column above the 
diagonal. In particular T;I~,~ = Tn-l,n - k(T,., - Tn-l,n-l). If T,,,, # Tn-l~,-l, 
k may be chosen as Tn-l,n/(Tn,n - Tn-l,n.J and Tz-l,n is set to zero. If 
T - Tn-l,n-l , no such transformation can be performed to zero element (n - 1, n) n.n - 
of the matrix. One can continue this process on rows n - 2, n - 3,..., 1 of the matrix 
to eliminate the upper triangular elements of T. Within each row t, one begins with 
the (8, L + 1) element, forms Pe,e+l as above, transforms the matrix, then forms 
P e,e+2 , etc. Figure 1 shows the order of the eliminations. This order of transformation 
is determined by noting that the transformation Pi,i affects elements in the ith row 

s The vector ei is a column vector with all zero elements except element i, which is unity. eir denotes 
the transpose of ei (a row vector). 

581/343-7 



HAGER AND GORDON 

FIG. 1. Order of transformations to eliminate elements linking non-degenerate eigenvalues. The 
element at which the algorithm begins is underlined. 

to the right of (i,j) and elements in thejth column above (i,j) as well as the element 
(i,j) itself. 

The results of this process in exact arithmetic is to leave only those off-diagonal 
elements linking degenerate eigenvalues. By suitable permutations, eigenvalues linked 
by off-diagonal terms may be grouped such that the final matrix is a series of upper 
triangular blocks along the diagonal. These permutations are based on the presence 
of non-negligible off-diagonal elements linking a set of eigenvalues in a given block, 
not on the equality of the eigenvalues. 

This procedure is straightforward and without hazard when applied using exact 
arithmetic. In cases where finite precision arithmetic is used and nearly degenerate 
eigenvalues are present, the decision of when Tjj - Tii may be taken as zero must be 
made with caution. In the three procedures leading to upper triangularization of the 
entire matrix, all transformations are either diagonal or unitary, insuring numerical 
stability. If Tj, and Tii differ by a quantity small compared to the element Tij , the 
transformation would introduce large (compared to unity) elements into the calcula- 
tion of the transformation matrix, decreasing the numerical stability of the method. 
In addition, one may eliminate elements which link eigenvalues which would be equal 
if exact arithmetic were used, but differ because of round-off error in previous 
calculations. 

In our algorithm, we decide whether to perform an elimination on the basis of the 
effect that the transformation may have on the numerical stability (in the sense of 
Section II) of the method. If the transformation would cause either (1) the product 
11 U (Im (1 U-l jlrn to exceed the bound set according to the rules of Section II of (2) the 
quotient ]I T j],& T, Ilrn (T, is the upper triangular matrix first obtained after application 
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of the QR algorithm) to exceed its bound, the transformation is not performed and 
we move on to try to eliminate the next element in our sequence. 

A test based solely on the accumulated affect of the transformations on 
II U Urn II U-l llm and II T ll~/ll To IL will guarantee that the transformed matrix will be 
similar to a matrix nearly (in the sense of Section II) equal to the original matrix. 
However, a single pathologically large transformation may be accepted early in the 
transformation scheme which raises one or both of the products of norms nearly to its 
bound. This could prevent the acceptance of several smaller (in the norm sense) 
transformations encountered later in the calculational scheme. To prevent this, we use 
an ancillary test: if a single element transformation would be accepted based on the 
bounds for II U IL II U-l IL and II T llm/ll To IL, its own norm is compared to a preset 
tolerance. The choice of this preset tolerance is a bit arbitrary, but our experience 
has been that a tolerance which rejects transformations where 11 Pi,i Ilrn 3 (Nt)1/2 + 1 
prevents a single transformation from pathologically increasing the norms to values so 
near their bounds as to prevent further transformations from being accepted, while 
not rejecting a large number of single transformations which could have safely been 
accepted. Again, we emphasize that this ancillary test in no way alters the stability 
properties of the method, but is merely a stratagem for attempting to find as sparse a 
set of upper triangular blocks as possible while maintaining numerical stability. 
This test may effectively be removed from the algorithm by raising the preset tolerance 
to NL + 1 or a larger value. 

It should be emphasized that if we raise the bounds on 11 U (lrn - /I U-l Ijm and 
II T Ilmill To llm 7 we will allow more transformations with larger elements 
k = Tij/(r,, - Tii) to be performed. By changing these bounds, the form of the block 
triangular matrix (which is the result of this series of transformations) may be altered 
rather arbitrarily. Indeed, with finite precision arithmetic any matrix can be trans- 
formed into “diagonal” form by allowing the bounds to be sufficiently large. This 
illustrates one intrinsic difficulty in applying numerical methods to matrices with 
degenerate or nearly degenerate eigenvalues. 

Because our interest lies in using this method as a tool to obtain numerical results 
rather than to study the space spanned by the eigenvectors and generalized eigen- 
vectors of the matrix, we choose our tolerance so as to insure maintenance of numerical 
stability in the sense described in Section II. We may thus err in not transforming 
the matrix to its most reduced form at this or a later stage. This can slightly increase 
the difficulty in performing further computations with the matrix and its eigenvectors, 
but we are at least confident these later computations will not be affected by numerical 
instability introduced at this stage. 

If an n x n matrix A possesses IZ linearly independent eignevectors and infinite 
precision arithmetic is performed, the matrix should be reduced to diagonal form by 
this procedure, and no further transformations are necessary; the eigenvalues and the 
right and left eigenvectors are known. For many such cases, the same result is obtained 
when finite precision calculations are used. For some matrices with a complete set of 
eigenvectors, the procedure described above is unable to achieve a full eigenanalysis 
because of the limitations of finite precision arithmetic. And in all cases where A is not 
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diagonalizable by similarity transformations, a complete eigenanalysis cannot be 
obtained by the methods described in this section. In the following sections we propose 
and test an algorithm for eliminating as many off-diagonal elements as possible from 
matrices of these latter two “difficult” types. 

IV. THE PROBLEM OF OBTAINING JORDAN FORM 

The matrix in block upper triangular form may be reduced further. In theory at 
least, one can eliminate all the elements above the superdiagonal, leading to Jordan 
canonical form. In this section, we briefly outline the usual approach to the problem 
of this reduction so as to gain insight into the fundamental computational difficulties 
of the problem. Our computational methods are described in Sections V and VI. 
Although our methods are formally quite different from the approach described here, 
it can be shown that for the simple, stable problem consisting of no zero or “nearly” 
zero elements along the superdiagonal, both approaches lead to identical results. 

To simplify the exposition, we will assume here and in Section V that the diagonal 
elements of each block are exactly equal, Tii = Tjj , for (i,j)e block. In Section VI, 
we will study the effects of the diagonal elements being only “nearly” equal as they 
are in any computation using finite precision arithmetic. 

By transforming the original matrix to a matrix consisting of several independent 
upper triangular blocks, we have reduced our problem from treating an n x n matrix 
to that of treating separately several smaller Mi x Mi upper triangular matrices Vi . 
Within each block we want to find a set of eigenvectors and generalized eigenvectors qj 
such that (Vi - hiI) qj = vjqj-1 , j = 1, Mi where vj = 0 or 1 depending on whether 
qj is respectively an eigenvector or generalized eigenvector. If there is no zero along 
the superdiagonal of Vi, this is a simple set of inhomogeneous linear equations 
which may be solved recursively for j = 2, Mi with q1 = (1 0 0 ... O)r and vj = 1 
(j = 2, MJ. 

If there exists one or more zeros along the superdiagonal, there is more than one 
eigenvector for the block (i.e., the block splits into more than one Jordan block). One 
must then solve the homogeneous set of equations (Vi - XII) q(O) = 0 to find a basis 
set for the eigenvectors. This is a formidable computational problem for which a 
reliable algorithm has only recently become available [4, 51. Even with this algorithm 
(which requires one to fix an arbitrary criterion for determining what is a zero 
singular value3 one may have difficulty finding (or insuring that one has found) a 
complete basis set for the eigenvectors. Further, proper linear combinations of the 
q(O) must be found to insure that the inhomogeneous system is consistent. This requires 
solution of an additional set of homogeneous linear equations [15, p. 3381. Finally, 
the equations must be solved for all the pi and an inversion of the matrix Q = [q,..., qi] 
performed to obtain the inverse transformation matrix. 

4 The singular values of a matrix A are the non-negative eigenvalues of the Hermitian matrix 
[;r $1 [15, p. 3361. 
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As before, when finite precision arithmetic is used, one may find a “nearly” zero 
element along the superdiagonal. Such small nonzero elements E, along the super- 
diagonal cause the solution of the inhomogeneous linear equations with a single basis 
eigenvector to become unstable (elements of order E;I can enter the calculation). 
On the other hand, an additional basis eigenvector (i.e., another linearly independent 
solution of (Vi - h,I)q = 0) may be difficult to calculate. Finally, it must be remem- 
bered that a numerical inversion of the set of eigenvectors and generalized eigenvectors 
must yet be performed, and we have no guarantee that this process will not introduce 
large numbers and round-off error to the computations. 

We do not intend to discuss these difficulties in great detail. The point we wish to 
stress is that an intrinsic difficulty in obtaining Jordan canonical form is present 
whenever a nearly zero element lies along the superdiagonal. (This is similar to the 
problems encountered in Section III when there is a zero or nearly zero difference 
between eigenvalues.) If exact arithmetic could be performed, the difficulty would 
merely be one of performing tedious calculations. But in finite precision calculations, 
one is faced always with the problem of deciding what is essentially zero and what is 
non-zero. In the approach we have briefly described in this section, it is not clear how 
to make this decision or what the effects of the decision may be. The new method 
described in Sections V and VI will emphasize looking at the effects (i.e., on the norms 
of the accumulated transformation matrices and of the transformed matrix itself) 
of this decision to guide us in obtaining a criterion for the decision. This new algorithm 
cannot, however, insure that Jordan canonical form-with the simplicity it affords 
subsequent calculations-will be obtained. Nonetheless, we will obtain a condensed 
form of the matrix which, as described in Section I, will still substantially reduce the 
time needed to calculate the matrix functions we have cited. 

Golub and Wilkinson [6] have formulated an algorithm based on the approach 
described in this section which is an alternative to the methods we propose in the 
following. Because their algorithm does not allow one to set a tolerance level for the 
accumulation of round-off error in a calculation, we find the algorithm we propose 
more suited to the computational problems described here. On the other hand, their 
algorithm will give insight into the structure of the eigenspace of a given problem. 
For our physical and chemical computations, we are not wedded to the need for a 
complete eigenanalysis; rather we need to reduce the computations to a manageable 
size (and time) while insuring the retention of numerical stability. The algorithm 
we propose does this for the problems which we have encountered. 

V. ALGORITHM TO OBTAIN “CONDENSED" FORM: 
CASE OF EQUAL DIAGONAL ELEMENTS IN EACH BLOCK 

Jn the algorithm proposed here, a series of single element transformations of a form 
similar to those described in Section III are used. The transformations are performed 
in order to annihilate as many elements as possible above the superdiagonal in each 
of the Mi x Mi blocks, Vi , of the block upper triangular matrix T, which results 
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from the algorithm described in Section III. We begin the transformation scheme in 
block V1 , then pass to block V2 , next to block V, , etc. 

The transformations are based on the ratio of the element to be removed (T,J 
to the superdiagonal element in row i (Ti,i+,) or to the superdiagonal element in 
column j (Tjel,). There is no intrinsic advantage to using a scheme based on one of 
these ratios to a scheme based on the other. We will, in the following, discuss the 
details of the two types of transformations. After this brief discourse, we will discuss 
the scheme we have devised to choose which type of transformation will be used to 
obtain a condensed form of each upper triangular block of the matrix. 

Transformation of Type I 

If Tij is a non-zero element above the superdiagonal in one of the blocks, say V, , 
we define our transformation matrix as Piej = I + ke,+lejT; the inverse transfor- 
mation matrix is trivially P$ = I - kei+,ejT. In the similarity relation T1 = P~~TPi,j , 
all the upper triangular blocks except V, are unchanged. Within the block V, , elements 
of row (i + 1) are transformed according to Tt+l,,, = Ti,,,, - kTj,m for j + 1 < 
m < x:‘,=, A4, and elements of columnj are transformed as Ti,j = T,,$ + kTD,i+, for 
(&;t M,) + 1 < p < i. xi=, n/r, is the value of the column index which marks the 
right boundary of V, . (Ci:i M,) + 1 marks the upper boundary of V, and is defined 
to be 1 when C = 1. Because the diagonal elements of the block have been assumed in 
this section to be equal, Tt+,,j = T,+l,j - k(Tjj - Ti+,,i+,) = T,+l,j . Thus, the 
transformation affects only the (i,,j) element, elements in row (i + 1) of the block 
with a column index m > ,j and elements in co1umn.j of the block with row index p < i. 
No elements outside the block V, are affected by the transformation (see Figure 2). 

- 
(I I) 
\\ 

\ 4 
\ (f,il 

\ (it I,/? yl///////a 
\ 

\ 
\ 

\ 

: _ 

0 
\ \ \ \ \ \ \ \ (& 

FIG. 2. Elements affected by elimination of element (i, j) during Stage 1. 
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If T&+1 # 0, Tisj may be eliminated by choosing k = -Ti,i/Ti,i+., . Again, the 
transformation will be rejected if it would cause the product 11 U /lrn /I U-l Ilrn or the 
quotient II T llDo/ll T, /Im to become greater than the bounds defined in Sections II and 
III. The additional test of the magnitude of the norm of the transformation matrix Pi,j 
(to prevent one pathologically large transformation from unduly increasing the two 
sets of norms) may also be applied to the transformation. Each of these tests is applied 
in precisely the same manner as described in Section III, and are meant to preserve 
numerical stability in the sense described in Section II. 

As in Section III, the order of the transformations is important to insure that 
non-zero elements are not reintroduced to sections of the matrix already zeroed. 
This transformation must be performed in the order 

(a) column 3, column 4,..., column Me of block V, ; 
(b) within column m, begin with the (m - 2, m) element and move up the 

column to the element in the first row of block V, . (See Figure 3.) 

L (M,,41 - 
FIG. 3. Order of transformation (Stage I). The element at which the algorithm begins is under- 

lined. 

Transformation of Type II 

If Ti,j is again a non-zero element above the superdiagonal in block V, , the trans- 
formation matrix is defined as Pi,j = I + k&Y’_, ; and the inverse transformation is 
simply P$ = I - ke,er-, . In the similarity relation T1 = <iTP,,, , all the upper 
triangular blocks except V, are unchanged. Within the block V, , elements of the row i 
are transformed according to Tt,, = Tism - kTi-l,m, j < m < C”,=, M, ; and 
elements of column (j - 1) are transformed as Ti+, = T,,j-l + kT,,, , (&It M,) + 
1 < p < i - 1. (The summations have the same definitions and meanings as in the 
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\ 
\ 

0 
\ \ \ \ \ \ \ \ 

FIG. 4. Elements affected by elimination of element (i,j) during Stage II. 

case of transformations of Type 1.) Because the diagonal elements of the block have 
been assumed in this section to be equal, Tt,j-, = Ti,f-l -- k(Tj-1,j-l - Ti,i) = 
Ti,j-l . Thus, the transformation affects only the (ij) element, elements in row i of the 
block with a column index m > j, and elements in column (j - 1) of the block with 
row index p < i. No elements outside the block V, are affected by the transformation 
(see Figure 4). If T,-,,? # 0, element Ti,j may be eliminated by choosing 
k = Ti,j/Ti-l,j . The transformation will be rejected if it fails any of the norm tests 
which were described for the case of transformations ofType I. So as not to reintroduce 
non-zero elements where the matrix has been zeroed, one must follow the order 

(a) perform the transformation successively on rows iWe - 2, h4[ - 3,..., 1; 
(b) within a row Y begin with the (r, Y + 2) element and move to the right to 

element (r, A&). (See Figure 5.) 

There is little to guide us in choosing which type of transformation to use in our 
reduction scheme. It is clear that, within any particular block Vi , we must use the 
same type of transformation to attempt to remove all the elements above the super- 
diagonal. This constraint is the result of our need not to reintroduce non-zero 
elements in positions which have been previously zeroed. To illustrate this point, 
suppose that we began our calculations in block Vi using transformations of Type I. 
If we failed to remove element T,nj by this transformation, we could turn to a trans- 
formation of Type II to attempt to zero element Tmj . But such a transformation- 
even if it were acceptable on the basis of our norm tolerances-would be unacceptable 
because it would alter elements in column (m - 1); these elements would have 
already been subject to transformations of the type I (see Figure 3) and we might well 
reintroduce non-zero elements to the column in positions which we had just zeroed. 
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FIG. 5. Order of transformations (Stage II). The element at which the algorithm begins is 
underlined. 

The upper triangle might be less sparse after removing element Tmj than before. A 
similar argument would hold if we had begun with transformations of Type II. 

To follow a full sweep of the block Vi using one type of transformation with a full 
sweep using the second type of transformation might also leave a less sparse upper 
triangle than we would have obtained had we halted after the first set of transfor- 
mations. We cannot show that there is no combination of the two types of transfor- 
mations which would unambiguously lead to a more condensed form than either of 
the types applied by itself to the block. We hope that such a combination will be 
discovered by someone cleverer than the present authors. But at this point in the 
development of the algorithm, we must content ourselves to using only one type of 
transformation in the process of condensing any one upper triangular block. 

The problem of choosing this one type of transformation for any given block Vi 
remains. As we remarked earlier, we have little real guidance in making this choice. 
Indeed, for the test problems we have studied, both types of transformations have led 
to nearly identical results. But the choice should not be made in an arbitrary manner. 
We will, for a given block Vi , choose that type of transformation (Type I or Type 11) 
which seems likely to remove the most elements above the superdiagonal-and, thus, 
lead to the most condensed form of the block. 

Either transformation scheme will fail to remove an element when the ratio of the 
magnitude of the element to the magnitude of the corresponding superdiagonal 
element is large. For simplicity, we will divide such occurrences into two categories: 
(a) cases where the elements are much greater in magnitude than the mean of the 
absolute values of the superdiagonal elements; and (b) cases where the magnitude 
of the element is not abnormally large in comparison with the mean of the absolute 
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values of superdiagonal elements, but where the magnitude of the corresponding 
superdiagonal element is small compared to this mean. Case (a) will cause either 
scheme to bypass elimination of the large element(s) above the superdiagonal. But 
while occurrences of this sort can occur in the reduction of a general complex matrix, 
physical and chemical considerations make them very unlikely for problems of the 
type described in the Introduction. The effect of occurrences which fall in category (b) 
can be different depending on the type of transformation chosen. As an example, 
study the upper triangular block 

Transformations of type I will bring this block into Jordan canonical form, while 
transformations of type II will succeed in removing only the (1,3) element. 

One goal of the scheme we choose is to minimize the product Ij P jlm 11 P-l Ilrn where 
P is the product of the e transformations Qj used to reduce the block. We recall that 
II P IL < Il~~l II Qj II = IIf=, (1 + I ki I) and II P-l IL < l3k, II Q-l II = da, (1 + I ki I). 
We wish then to reduce these bounds by choosing the type of transformation (I or II) 
which reduces the factors (1 + j ki I). To use this desire to help choose which type of 
transformation to perform, we have, for each upper triangular block, followed the 
procedure: 

(1) Find the mean of the absolute value of the superdiagonal elements. 
(2) Pick out all superdiagonal elements which are an order of magnitude smaller 

than the mean calculated in (1). If there are none, pick out the superdiagonal element 
of smallest magnitude. 

(3) Form the products flzl (I t / k; I) and HE1 (1 + / k; 1) for the m elements 
above the superdiagonal in the same row(s) as the superdiagonal elements chosen in (2) 
and the ml elements above the superdiagonal in the same column(s) as these super- 
diagonal elements. k’ and k” are chosen as the ratio of the element above the super- 
diagonal to the corresponding superdiagonal element. This provides us with a guess of 
the relative size (in the sense of a norm) of the contributions of the single element 
transformations of Type I to those of Type II for those cases which should be the 
most difficult for the reduction scheme. 

(4) Choose transformations of Type I if l-I& (1 + j kl 1) < nel (1 + I k; I). 
Otherwise, choose transformations of Type II. 

This scheme is by no means foolproof or without deficiencies. In particular, k: 
(or k;) may be a very poor approximation to the true kc used in the transformation. 
Nonetheless, by this procedure we have handled those manageable cases (those 
earlier classed as category (b)) which could cause difficulties in the reduction scheme 
in order to provide some guidance in choosing either transformations of type I or 
of type II for use in the reduction of a particular upper triangular block. 
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If no proposed transformation within a particular block was rejected because it 
would have violated the bounds on the magnitudes of the accumulated transformation 
matrix or of the norm of the transformed matrix (or, when this test is used, of the 
norm of the individual transformation matrices), all elements above the superdiagonal 
in block Vi have been eliminated; unnormalized Jordan form has been obtained. 

If some elements have not been zeroed because one or more transformations were 
rejected, we are unable to obtain Jordan form by the algorithm proposed here. 
Failure of the algorithm to remove an element above the superdiagonal is symptomatic 
of a small (at least compared to the element which cannot be made zero) superdiagonal 
element. This is precisely the general difficulty in obtaining Jordan canonical form 
discussed in Section IV. Failure of our algorithm to zero elements above the super- 
diagonal is not symptomatic of a new problem introduced by our methods. But our 
criterion for the maintenance of numerical stability makes the treatment of this 
generic symptom more precise than in methods which do not have error bounds. 

The series of transformations described here and applied successively to the separate 
upper triangular blocks zeroes as many of the upper triangular elements in each 
degenerate block as is practical, consistent with the bounds on the norms of the 
accumulated transformations and of the transformation matrix itself. The result is 
not necessarily a matrix in (un-normalized) Jordan form5 or any other canonical 
form; it may be a matrix consisting of diagonal blocks, Jordan blocks, and some 
blocks merely in upper triangular form. The matrix may be forced into a canonical 
form by relaxing the bounds, but only at the expense of allowing large elements to 
enter the transformation matrices (and possibly the transformed matrix itself) and 
introducing the concomitant danger of instability, due to roundoff error, to this and 
subsequent calculations. By this algorithm, we will, however, have reduced the problem 
of calculating matrix functions such as 9(w) and G(t) for many values of the scalar 
parameters to a more manageable problem without sacrificing numerical stability. 

VI. THE EFFECT OF HAVING ONLY NEARLY EQUAL DIAGONAL ELEMENTS OF THE BLOCK 

If the diagonal elements of the upper triangular block are not strictly equal (as is 
the general case with finite precision calculations), the transformations described in 
Section V are changed only in that 

Ti+l,j = Ti+l.j - k(Tjj - Ti+l,i+d: Type 1 

Ti.i-1 = Tc,+l - k(Tj-l,f-l - Ti,i): Type 2 

rather than leaving these elements unaltered. For superdiagonal elements (j - 1,j) 

5 “Unnormalized” Jordan form describes a matrix in block form with zeros linking different 
blocks and with non-zero elements only in the diagonal and superdiagonal rows of each block. The 
superdiagonal elements in each block do not necessarily have the value unity. Matrices in “un- 
normalized” Jordan form may be transformed to Jordan canonical form by a series of diagonal 
transformations. For calculational purposes, the two forms have nearly identical properties. 
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or (i, i + 1) this is unimportant. For other elements, this corresponds to reintroducing 
a non-zero value to an element which should have previously been transformed to 
zero in the transformation scheme. In general, the element reintroduced will be small 
since the diagonal elements are nearly equal and 1 k 1 is indirectly bounded by the 
bounds on 11 U Ilrn I/ U-l jlrn and 11 T II/Ii T, Ilrn . The elements reintroduced will be of order 
(T8,e - T,,,)2,,-,,/Ts.d. in magnitude, where (T!,! - T,,Jmax is the maximum 
difference between eigenvalues in the degenerate block and Ts.d, is the pivot super- 
diagonal element. k is proportional to the element being eliminated, so that on a second 
sweep of the transformation sequence to eliminate the non-zero values reintroduced 
in the first sweep, the method would reintroduce elements proportional to 
CT, - %n%,/T,2.d. . Subsequent sweeps would cause the elements reintroduced to 
be proportional to (Tte - Tmm)“$&.T~,d, , where a is the number of sweeps performed. 
Because Ttt - T,,, is a small number, the elements reintroduced should eventually 
become smaller in magnitude than E 4 11 T lloc where E is an arbitrary small positive 
number. The elements reintroduced may then be safely neglected. The iteration process 
will not converge if Ts.d. < I Ttf - T,,, I.7 his corresponds to the situation of a small, 
“nearly” zero superdiagonal element-the occurrence which causes our method 
generally to fail to eliminate an element. Thus, failure of the iteration process to 
converge is not due to a new limitation of the algorithm, but is a symptom of the 
general difficulty encountered in this problem. The iteration sequence is halted when 
the number and magnitudes of the remaining upper diagonal elements no longer 
decrease. 

VII. TEST RESULTS 

Several tests were performed using the algorithm described in this paper. We 
remind the reader that the explicit aim of the algorithm is not a complete eigenanalysis 
of a matrix; rather, the algorithm attempts to produce a condensed form of the matrix 
which facilitates evaluations of matrix quantities which are functions of a scalar 
(such as those described in Section I) for many values of the scalar. Nonetheless, 
in the few physical chemical problems we have used as tests and in most applications 
to previously published test matrix systems, we have obtained a complete eigen- 
analysis. We present three tests of this type for a comparison of the accuracy of our 
methods to that of other algorithms intended for the eigenanalysis of general complex 
matrices. We present a fourth test result in which we do not obtain any particular 
canonical form with our algorithm. We hope, with this test, to show that the algorithm 
proposed here provides considerable computational advantage for problems of the 
type described in the Introduction. 

The results quoted here were found using a double precision version (double 
precision = 16 digits on an IBM 360/91) of the program. The bounds discussed in 
Section 2 are NL = NA = 103. That is, we expect the results to have accuracies at least 
as good as that accuracy obtained in single precision (7 digits) computations employing 
exactly unitary similarities. 
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(1) In most previous applications of the QR algorithm, the eigenvectors were 
determined by inverse iteration. As noted earlier, we intend this algorithm to apply 
to types of degenerate and nearly degenerate problems where inverse iteration often 
does not provide a complete set of eigenvectors. Therefore, we have chosen to 
accumulate the transformation matrices during the calculation in order to find the 
complete set of eigenvectors. In order to show how well this scheme calculates the 
eigenvectors, we have tested the algorithm on a matrix which is diagonalizable. This 
does not test our main result, the algorithm of the previous two sections, but does 
isolate the question of the propriety of calculating the eigenvectors by this method. 
We use the matrix [20] 

I 
1+3i 2+i 3+2i l+i 
3+4i 1+2i 2+i 4+3i 
2+3i lf5i 3+i 5 + 2i 

1+2i 3+i 1 + 4i 5 + 3i 1 

which has no degenerate eigenvalues and a complete set of four eigenvectors. 

Calculated Eigenvalues 

9.7836581252 + 9.322514224201 

-3.37100978521 - 0.770453986921 
2.22168234753 + 1.848993359671 
I.36566930990 - 1.401053597411 

Calculated Eigenvectors 

6.323377647 x 10-l - 1.432807945 x 

8.737585915 x 10-l + 8.105780784 x 10-3i 
1 .ooooooooo + o.ooooooooooi 
9.437175886 x 10-l + 3.7984634821 10-2i 1 

-5.060964620 x 10-l + 5.834519627 x lo-li 
1 .ooooooooo + o.oooooooooi 
5.183194838 x 10-l - 7.14657072Q x lo-‘i 

-5.534849819 x 10-l + 1.875633203 x 10-2i i 

-7.966208174 x 10-l + 3.049807858 x IO-5 
-1.788343950 x 10-l + 4.297241478 x lo-li 
-2.5281431120 x 10-l + 3.8173404952 x 10-2i 

1.OOOOOOOOO + O.OOOOOOOOOOi 1 
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-8.465987045 x lo-* + 7.302035513 x lo-Ii 
-8.7941701580 x 1O-2 - 3.8790179960 x 10-Q 

1.000000000 + o.ooOOOOoooi 
-4.3208937465 x 10-l - 4.3342636941 x lo-% 

The eigenvectors have been normalized such that the element of largest magnitude 
is set to unity. The first digit in disagreement with the values published in reference 20 
are underlined. 

(2) To test the algorithm of the previous section, the method proposed here was 
applied to a 6 x 6 matrix with two quadratic divisors and whose eigenvalues and set 
of generalized eigenvectors are known exactly: 

Eigenvalues 

Exact Computed 

1 + & 1.00000000002 + 0.500000OOQ2i 
1 + ii 0.99999999999997 + .499999999999981 

1 + Jj 1 .OOOOOOOOOOOO 1 + .50000000000 1 i 
-2-i - 1.99999999999992 - .999999999999991 

4 + 2i 4.000000000003 + 2.000000000001 i 

4 + 2i 3.99999999999998 + 1.999999999997i 

Exact Eigenvectors 

x=1 A=1 x=-2 x=4 

-1 
--I 

0 [I 1 
0 
0 II 

0 
0 
1 
0 
1 

-1 II 
0 
0 
1 
0 

-1 
1 
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Exact Generalized Eigenvectors 

A=1 
-1 

112 
0 [I -l/2 
0 
0 

x=4 

I 

0 
0 

-l/S 
0 
118 
1 . 
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The calculated eigenvectors were normalized such that the element of largest 
magnitude was set to unity. The imaginary parts of the calculated eigenvectors were 
all less than lo-l3 in magnitude. The real parts of the calculated eigenvectors differed 
from the exact eigenvectors by less than 2 parts in 10 13. We also calculated the matrix 
H = UDU-l, where U is the matrix of eigenvectors and D is the diagonalized form 
of the original matrix. If we denote the original matrix as A, we find that 
(11 A /Im - Ij H jlm)/ll A Ilm < lo-15. The diagonal form obtained is clearly similar to a 
matrix very nearly the same as our original matrix. 

(3) Several 12 x 12 complex matrices A’ were obtained by multiplying the 
matrix 

1 
6 1 0 

6 1 
6 0 

3 1 
3 1 

3 1 
3 1 

3 1 
3 

by known P and P-l such that A’ = P-‘AP. We then used a preliminary version of 
the algorithm of Golub and Wilkinson and the double precision version of our 
algorithm to reduce A’ to Jordan form. The accuracies of the results were comparable. 
Our algorithm required approximately 55 % less core than the program of Golub and 
Wilkinson. In addition, 15-25 % less time was required. This last point may be 
misleading in that (a) the programs do not perform exactly the same functions and 
(b) our program performs all arithmetic in the real field while the program of Golub 
and Wilkinson uses the machine supplied routines to perform complex arithmetic. 
As a more precise indicator of the efficiency of our algorithm, we have counted the 
number of multiplications for each step in the limit of large N (the dimension of the 
matrix): 
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Number of complex multiplications 

For matrix For matrix and 
alone eigenvectors 

Reduce to Upper 
Hessenberg Form [19, p. 349) 
QR algorithm” [19, p. 5421 
Reduce to block 
upper triangular form 

5 --jp 
3 

- 1013 N3 

-883 -16N3 
Na N- -N$ 
3 

Reduce to Jordan or 
“nearly” Jordan form 
(per iteration)b 

Q Assuming two iterations per eigenvalue. 
b M, is the dimension of the (1: upper triangular block, C, M, = N. 

The algorithm of Golub and Wilkinson may necessitate the calling of a singular 
decomposition routine, an order x, MU3 (Ca M, = N) process, up to 2N times. 
The result of both our computational experience and operation count cause us to 
believe that our algorithm requires less core and is faster than the more classical 
approach to the problem. Furthermore, we can bound the accumulated round-off 
effects of our single element transformations. The level of round-off error we will 
tolerate does, in fact, determine which single element transformations will be 
performed and which will not. 

(4) As a final test,we consider the application of the algorithm of Sections III-VI 
to a set of n x n Frank matrices Fin) (n = 2, 3,..., 12) defined by 

F$’ = n - j + 1 i= 1,n; j=i,n 

Fi$ = n - j j=l,??--1 

$9 zz 0 23 otherwise 

For rather small values of n (depending on the precision of the machine calculations), 
some of the eigenvalues and eigenvectors are very ill-conditioned [6]. However, the 
simple transformation 

I 

1 -1 
l-l 0 

(Ftn’ - I) 

0 
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s 

(I-A) x 

n-l (1-A) h 

n-2 (1-A). . 

L 

= G(.Y) 
. 

. 

1 (1 -x: 

enables one to determine the eigenvalues of F cn) from those of a “quasi-symmetric” 
tridiagonal matrix, 

- 0 1 
s-l 0 1 

s-2 0 1 
T(S) = s-3 * 

. . 
. 1 

1 0 

The determination of these latter eigenvalues is a well-conditioned problem for all 
values of n [6]. Previous study [6] has shown that the smaller eigenvalues of F(“) are 
ill-conditioned and that the QR algorithm will show substantial error in the deter- 
mination of these eigenvalues. In the following we briefly describe our results for the 
most ill-conditioned problem we have studied, F (12). Our algorithm utilizes the QR 
algorithm to transform the matrix in Hessenberg form to upper triangular form. 
Using double precision arithmetic we find the four smallest eigenvalues of F(la) to be 

A,, = 0.0310 . . . . h,, = 0.0495 a**, h,, = 0.0812 **., X, = 0.1436 1s.. 

These values are in agreement with the results of reference 12. Slight perturbations 
in the upper triangular elements caused by round-off error in the application of 
Osborne’s equilibration algorithm prior to use of the QR algorithm led to the compu- 
tation of two pairs of complex conjugate eigenvalues 

x 11,12 = -0.04678 f 0.089141’ 

x 9,1o = 0.15556 & 0.172131’. 

Thus, our algorithm shows the same instabilities, when applied to Fo2), as described 
in reference 6. 

Application of the single element transformations to zero the upper triangular 
elements introduces to the upper triangle some elements large compared to those 
along the diagonal. This is a reflection of the inability of the QR algorithm to accu- 
rately determine the upper triangular form unitarily similar to the original Frank 
matrix. The disposition of the large elements introduced to the upper triangle depends 
on the bounds on the norms of the matrix transformations and of the transformed 

58I/32/3-8 
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matrix. Elements so large that the transformation is not performed will remain in the 
upper triangle. Smaller elements will be annihilated introducing additive factors of 
the order of the transformation element to the transformation matrices U and U-l. 
With the norm bounds given at the beginning of this section, elements of magnitude 
5 x IO2 were introduced to U-l. The final transformed matrix may be placed in 
diagonal form by increasing the size of the bounds on the norms; or more elements 
may be retained in the upper triangle by decreasing these bounds. Thus, we may 
obtain a very large number of final forms of the matrix, each of which is similar to a 
matrix Hen) nearly equal to the original Frank matrix, H(“) = F(“) + K, where 
IIK jl.&F(“)II, is a very small number determined essentially by the values of NL and NA . 

For NL = NA = 103, we find II K l/m/ll Fo2) /Im to be about 3 x 1O-s. The a priori 
upper bound of Section II would be lO-7 ~~=,j(j, 12). For N, = NA = 102, we find 
II K llm/li Fo2’ Ijm to be about lo-12. In this case, the a priori upper bound would be 
lo-lo CiL,f(j, 12). The smaller value of NA = N, for this second calculation implies 
that the relative error should be a factor of IO3 smaller than for the first computation. 
The computed relative error is in fact 3 x lo3 smaller for the second computation 
than for the first. If we assume that y1 = 12 is large enough that Ci=,f(j, n) may be 
taken to be Kn3/2, as in Section II, (K is a number of magnitude unity or slightly 
greater), the a priori bounds have the numerical values 4K x lO-‘j and 4K x 1O-s, 
respectively. The computed relative errors are a factor of approximately lo3 smaller 
than this. Assuming a more random distribution of roundoff errors, Ci=,j(j, n) z 
P?z~/~, the a priori bounds are respectively, 6K* x 1O-7 and 6K* x lo-lo, which 
are still between two and three orders of magnitude larger than the computed relative 
errors. Our a priori bounds to the error, at least for the Frank matrix problem, are 
very generous. This calculation shows explicitly our ability to control round-off error 
by varying NL and NA . The cost of decreasing the round-off error by more than 
three orders of magnitude was the retention of two extra elements in the upper 
triangle. The block structure was unaltered by this change. 

We are unable to calculate accurately the eigenvalues and particularly the eigen- 
vectors of the Frank matrix F 02). Nonetheless, we have retained knowledge of the 
transformations used in reducing the matrix to a condensed form and we can use the 
results of the calculation to obtain functions such as 9(w) for given vectors d, and d, 
and many values of w. We have performed such a calculation directly with Fo2) and 
from the condensed form of F (12) obtained with NL = NA = lo2 for 1000 values of w 
(and a more or less arbitrary choice of d, and d,). The calculation was approximately 
12 times faster using the reduced form of F (12); the results are accurate to 12 significant 
figures. 

VIII. CONCLUSION 

The algorithm presented here may be summarized as follows: 

(1) Equilibrate the matrix by Osborne’s algorithm; 
(2) Reduce to upper Hessenberg form; 
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(3) Upper triangularize by the QR algorithm; 
(4) Eliminate upper triangular elements by single element transformations based 

on the ratio (i,j)/l(i, i) - (j,j)l. Stop if diagonal form is obtained. 
(5) Permute the matrix to block upper triangular form. 
(6) Work on each block separately. Eliminate remaining elements above the 

superdiagonal by single element transformations based on the ratios (i,j)/(i, i + 1) 
(Type I) or (i,j)/(,j - I,j) (Type II). Iterate if non-zero values are reintroduced to 
previously zeroed positions because (i, i) # (j,j). 

Our emphasis on single element transformations is not necessary to the spirit of 
this approach; singIe row and single column schemes have also been investigated. 
But such single element transformations possess significant virtues: 

(1) Simple programming; 
(2) Both trivial calculation of the inverse transformation and a bound on the 

inverse transformation identical to the bound on the transformation itself. 
(3) Easy perception of the cause of a large element in the transformation; 
(4) A quite fast algorithm. 

Further, we have found them to be completely equivalent to the whole row or whole 
column elimination schemes and, when no small superdiagonal elements are present, 
to the simple linear equations solution method of finding generalized eigenvectors 
discussed in Section IV. 

This computational method is meant to reduce a matrix by stable transformations 
to a simpler form. It aims to obtain diagonal form or Jordan canonical form as the 
final product. We find, however, that attempts to force a matrix into such canonical 
forms sometimes require acceptance of large transformation elements which may be 
accompanied by the introduction of large round-off errors and numerical instability to 
the calculations. We have chosen to forego obtaining a canonical form when insta- 
bilities may result, instead choosing to perform subsequent calculations with a 
simplified, but noncanonical form of the matrix. Subsequent calculations may be made 
more difficult (but these cases have been few in our experience): however. their 
numerical accuracy will be guaranteed to any desired level. 
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